Moteur de recherche d’entreprises européennes
Financement de l’UE (4 071 977 €) : Multi-material additive manufacturing for lightweight and thermal management Hor25/11/2022 Programme de recherche et d'innovation de l'UE « Horizon »
Vue d’ensemble
Texte
Multi-material additive manufacturing for lightweight and thermal management
The 26th Climate Change Conference has highlighted the urgent need to reduce global carbon dioxide emissions to limit global warming. The transport sector accounts for approx. 16% of the global carbon emissions and has identified fleet electrification as the primary route to achieving climate neutrality. However, the main challenges are the current weight of components and the cost of new systems to ensure efficiency and long-term sustainability. As a result, the industry has recognised the need for transformative technologies and production methods to develop lighter, more efficient, and cost-effective solutions to enable this transition and achieve climate neutrality. With their outstanding mechanical strength, Carbon Fibre Composites (CFC) have been increasingly used to replace metals in products requiring lightweight features, such as aircraft or high-performance vehicles. However, due to the traditional manufacturing process and poor thermal conductivity, the use of CFC has been limited to structural applications. For example, batteries, electrical motors, and power electronics, where power losses need to be efficiently dissipated, typically require separate heat exchangers, resulting in heavier and less cost-effective solutions that still utilize bulky designs and heavy materials. The vision of MULTHEM is to develop a reliable and validated Additively Manufactured (AM) CFC process with enhanced thermal conductivity with different material combinations and nanotechnology. This innovative approach will allow the development of components, such as battery and motor housings with dual functionality comprising structural and cooling features and with a more cost-effective approach than traditional methods. This solution will enhance the product performance, first by the weight reduction achieved by designs that only AM enables, and second, by using CFC-metal structures with enhanced thermal conductivity strategies, lighter and stronger than aluminium or steel.
| Brunel University London | ? |
| Eirecomposites Teoranta | 476 250 € |
| FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG e. V. | 535 321 € |
| Fundacion Centro Tecnologico Metalmecanica y del Transporte (Cetemet) | 560 313 € |
| Luxembourg Institute OF Science AND Technology | 387 188 € |
| NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO | 495 191 € |
| Prima Additive Srl | 487 500 € |
| Solmatek Solutions SL | 620 394 € |
| Thales | 509 821 € |
| Thales six GTS France SAS | 0,00 € |
https://cordis.europa.eu/project/id/101091495
Cette annonce se réfère à une date antérieure et ne reflète pas nécessairement l’état actuel. L’état actuel est présenté à la page suivante : Brunel University London, Uxbridge, Royaume Uni.
Les visualisations de "Brunel University London - Financement de l’UE (4 071 977 €) : Multi-material additive manufacturing for lightweight and thermal management"
sont mis à disposition par
North Data
et peuvent être réutilisées selon les termes de la licence
Creative Commons CC-BY.